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Hourly potential evapotranspiration 
at 0.1° resolution for the global 
land surface from 1981-present
Michael Bliss Singer  1,2,3 ✉, Dagmawi Teklu asfaw4, Rafael Rosolem5,6, Mark O. Cuthbert  1,7,  
Diego G. Miralles  8, David MacLeod4, Edisson Andres Quichimbo  1 & Katerina Michaelides3,4,6

Challenges exist for assessing the impacts of climate and climate change on the hydrological cycle on 
local and regional scales, and in turn on water resources, food, energy, and natural hazards. Potential 
evapotranspiration (PET) represents atmospheric demand for water, which is required at high spatial 
and temporal resolutions to compute actual evapotranspiration and thus close the water balance 
near the land surface for many such applications, but there are currently no available high-resolution 
datasets of PET. Here we develop an hourly PET dataset (hPET) for the global land surface at 0.1° spatial 
resolution, based on output from the recently developed ERA5-Land reanalysis dataset, over the period 
1981 to present. We show how hPET compares to other available global PET datasets, over common 
spatiotemporal resolutions and time frames, with respect to spatial patterns of climatology and 
seasonal variations for selected humid and arid locations across the globe. We provide the data for users 
to employ for multiple applications to explore diurnal and seasonal variations in evaporative demand 
for water.

Background & Summary
Terrestrial evaporative demand is a key climatic quantity that controls the removal of water from land back to 
the atmosphere and is of paramount importance to the global water cycle1–4. Theoretical evaporative demand 
is often formally quantified as potential evapotranspiration (PET), which is required to calculate actual evapo-
transpiration and close the water balance for numerous applications ranging from water resources to agriculture 
to natural hazards to climate change impact analysis. PET is computed based on the energy, aerodynamics, and 
saturation demand in the atmosphere available for evaporation near the Earth’s surface, whether it be from open 
water bodies, soils, or the surface of vegetation (either as a result of interception or transpiration), unconstrained 
by water availability. While multiple definitions of PET exist in literature (see e.g.5), there exist widely accepted 
conventions for calculation of PET from commonly available climate variables including solar radiation, relative 
humidity, air temperature, and wind6–11. However, there is currently no available global PET dataset developed 
by conventional methods (e.g., Penman-Monteith, Priestley-Taylor) over recent decades with the combined high 
spatial and temporal resolutions required as input to many environmental models and analyses.

Spatial differences and temporal changes in PET may have profound impacts on terrestrial near-surface water 
fluxes and water storage (e.g., runoff, soil moisture, groundwater, evapotranspiration), which in turn have impor-
tant implications for plant/crop maintenance/growth, ecology, natural hazards, and water resources for human 
society1,8. For example, in drylands, which comprise ~41% of the global land surface and a third of the world’s 
population12, the synchronicity and temporal offsets between rainfall and evaporative demand over diurnal and 
seasonal cycles can have major implications for the water balance and plant-available water, especially since ante-
cedent soil moisture prior to rainstorms is typically low11,13–17. Correspondingly, the temporally evolving balance 
between precipitation, antecedent moisture, and PET affects societally relevant outcomes of the hydrologic cycle 
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in drylands and many humid lands18 such as agricultural yields, the availability of fodder vegetation for livestock, 
the risk of flash floods and droughts, and access to groundwater19–22, and it could impact landscape evolution23,24.

A key rationale for high temporal resolution in PET is that plant water stress occurs mainly around midday 
and early afternoon, so intra-daily variability in PET is needed to characterize root-zone water availability, plant 
water uptake, and water stress25–28, and it can also generate feedbacks between soil moisture and rainfall18,29,30. 
Therefore, characterization of the driving atmospheric demand (PET) at high (sub-daily) resolution, which may 
vary dramatically across a region and between regions, is required to assess the energy balance and its controls on 
soil moisture, plant transpiration, land surface evaporation, and precipitation feedbacks over a day, seasonally, or 
even over years to decades.

High temporal resolution PET datasets do exist at specific geographical locations, but these are typically 
derived from in situ climate variables collected from limited networks (e.g., meteorological stations, eddy flux 
towers5), and are therefore neither global nor gridded. There are also existing gridded global PET datasets over 
land that are based on interpolation of meteorologic station data (e.g.31) and/or based on estimation from remote 
sensing data (e.g.32) at temporal resolutions ranging from monthly down to several days. Although each of these 
datasets is useful for certain purposes, there is no currently available global PET product for multiple decades in 
the recent historical past, based on either the Penman-Monteith or Priestly-Taylor methods, which can capture 
both diurnal (sub-daily) and seasonal variations in evaporative demand.

As atmospheric temperature has risen across most of the globe due to anthropogenic forcing, PET may also 
increase for many locations11,33,34, though declines in wind speed may balance out these increases35. However, 
quantification of PET changes, their timing relationships with precipitation, and their impact on the hydrolog-
ical cycle is limited by a lack of high spatial and temporal resolution information across the globe. This missing 
dataset thwarts efforts to close the water balance in point-based calculations and to parameterize hydrological 
models and land surface models at catchment to regional scales, especially in areas with very high aridity. A new, 
high-resolution dataset on PET is essential to quantitatively evaluate a range of climate impacts36–38, particularly 
within dryland regions18. We are not arguing, however, that in situ data be replaced by gridded data. Rather, we 
see in situ data collection efforts as critical for understanding how global warming is reflected within the key 
parameters that comprise PET (e.g., wind speed), which will support improvements in global climate modeling 
and the products that emerge from it.

To fill the spatial and temporal shortcomings in situ data networks and existing gridded datasets, we have 
developed an hourly dataset of PET (hPET), which we also provide as a daily aggregation (dPET), the details 
of which are described below. The hPET dataset is computed using meteorological variables output from 
the ERA5-Land dataset recently released by the European Centre for Medium-Range Weather Forecasts 
(ECMWF). The publicly available ERA5-Land dataset (https://cds.climate.copernicus.eu/cdsapp#!/dataset/
reanalysis-era5-land?tab=overview) is based on the latest ERA5 meteorological reanalysis as forcing data to drive 
the ECMWF’s land surface model Scheme for Surface Exchanges over Land incorporating land surface hydrology 
(H-TESSEL). ERA5-Land provides global output of meteorological data for 1981-present at hourly resolution 
over a spatial grid of 0.1° or 9 km at the equator.

Methods
PET was calculated based on the standard method for computing reference evapotranspiration developed by the 
Food and Agriculture Organization (FAO)6, although we acknowledge that there are other atmosphere-only meth-
ods used to compute PET5. This method requires seven climate variables to compute PET for each location includ-
ing zonal and meridional components of wind speed, air and dew point temperature, net solar and net thermal 
components of radiation, and atmospheric pressure at the Earth’s surface. We downloaded the complete global 
land surface dataset of ERA5-Land reanalysis meteorological variables (and their units) required to estimate PET:

 1. 10 m u-component (zonal) of wind speed [m s−1]
 2. 10 m v-component (meridional) of wind speed [m s−1]
 3. 2 m dew point temperature [K]
 4. 2 m air temperature [K]
 5. surface net solar radiation [J m−2]
 6. surface net thermal radiation [J m−2]
 7. atmospheric surface pressure [Pa]

Hourly potential evapotranspiration (hPET) was calculated via the FAO’s Penman-Monteith equation for ref-
erence crop evapotranspiration described in (ref. 6). The equation is developed to compute reference evapotran-
spiration rate (ET0) based on a hypothetical reference crop with an assumed height of 0.12 m having a surface 
resistance of 70 s m−1, closely resembling the evaporation of an extension surface of green grass of uniform height, 
actively growing and adequately watered. Notice, however, that we use surface net solar radiation for meteoro-
logical forcing. As a result, our estimates will vary slightly from the assumed 0.23 constant albedo in reference 
evapotranspiration via the FAO method. This is one of the reasons we refer to our product as potential rather than 
reference evapotranspiration. Since PET is a notional variable, different definitions are encountered in the litera-
ture, and frequently, the concepts of ET0, PET, and atmospheric demand for water are used interchangeably5,11. In 
this study we use ET0, which can be uniformly applied across the globe to obtain a standardized and well-accepted 
metric of PET. PET can be computed on hourly timescales for each hour (t) and for each pixel location (x) as6:

( )
hPET

R G u e e

u

0 408 ( ) ( )

(1 0 34 ) (1)x t
n T s a

,

37
273 2

2

a
γ

γ
=

. ∆ − + −

∆ + + .
+

https://doi.org/10.1038/s41597-021-01003-9
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land?tab=overview


3Scientific Data |           (2021) 8:224  | https://doi.org/10.1038/s41597-021-01003-9

www.nature.com/scientificdatawww.nature.com/scientificdata/

where Rn is hourly net radiation (MJ m−2), G the soil heat flux (MJ m−2), γ is the psychrometric constant (kPa 
°C−1), ∆ is slope of saturation vapour pressure curve (kPa °C−1), Ta is hourly air temperature (°C) after convert-
ing from ERA5-Land temperature in K, es is hourly saturation vapour pressure (kPa), ea is actual hourly vapour 
pressure (kPa), and u2 is the hourly wind speed (m s−1) at 2 m above the land surface. We have converted the wind 
speed output from ERA5-Land for the original 10 m height above the land surface to the required 2-m value based 
on a logarithmic velocity profile above a short grass surface6 as:
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are available (z = 10 m in our case). This assumption may lead to errors in cases where the shape of velocity profile 
does not follow this form due to non-neutral conditions. Also, since we are making our calculation on an hourly 
basis, es and ea are computed based on the Tetens equation39 as a function of hourly air (Ta) and dew point tem-
perature (Tdew) in °C after converting from K, respectively, as:
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The slope of saturation vapour pressure curve (∆) is calculated as:
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where P is atmospheric pressure, Cp is the air’s specific heat at constant pressure based on the ideal gas law with 
a value of 1.013 × 10−3 MJ kg−1 per °C, ε is the ratio of the molecular weight of water vapor to that of dry air, or 
0.622, and λ is the latent heat of vaporization, a constant value of 2.45 MJ kg−1.

Net radiation in MJ m−2, Rn, is estimated from net solar radiation (Rs) and net thermal radiation (Rt) as:

R R R (7)n s t= −

Note that since Rt is provided from ERA5-Land as a negative value, we compute this equation as: Rn = Rs + Rt. 
Soil heat flux, G is estimated separately for daytime and nighttime as:
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where the soil heat flux is considered to be 10% of the net radiation (Rn) during the day and 50% during the night6 
because the night-time heat flux is negative (upward). Note that we use the net solar radiation (Rs) to define day-
time and night-time periods for each day for each pixel.

Note that negative (night-time) values computed by our method have not been changed to zero in hPET, as 
is often done, since these values may be useful to some scientists to explore condensation processes. Many users 
of hPET may want to convert negative values to zero. The resulting hourly, 0.1° gridded dataset (hPET) was 
then aggregated by summation to daily timescales to obtain the daily dataset (dPET). Both datasets have been 
uploaded to a public data server for download (see below).

Data Records
Data file path. The initial temporal domain for hPET and dPET data is 1981–2019, but the dataset will be 
updated annually in January as new output data become available from ERA5-Land. These 0.1° datasets40 are 
located on a public data server at https://doi.org/10.5523/bris.qb8ujazzda0s2aykkv0oq0ctp.

Data file format. The data within hPET and dPET are arranged on a yearly basis for the entire globe, where 
each netCDF (****.nc) filename begins with its year, followed by either ‘hourly_pet’ or ‘daily_pet’. For example, 
the global hPET dataset for 2019 is contained within the file called ‘2019_hourly_pet.nc’. The total sizes of indi-
vidual (annual) files for these datasets are ~55GB for hPET and ~2.2GB for dPET. The total size of both datasets 
for 1981–2019 is ~2.2TB.

File structure. Each file of hPET and dPET contains four variables (time, latitude, longitude, pet), as per 
Table 1. All times are in Coordinated Universal Time (UTC). Note that the first year of the hourly dataset, 1981, is 
missing its first hourly value for 00:00, so this year’s file contains only 8759 values for hPET. Latitude is given from 
90° to −90° with 0.1° horizontal resolution (90°, 89.9°, 89.8°, …, −89.8°, −89.9°, −90°), and longitude ranges 
from −180° to 180° (−180°, −179.9°, −179.8°, …, 179.8°, 179.9°, 180°).
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Technical Validation
After creating hPET, we investigated how our new dataset compares with existing PET products based on 
Priestley-Taylor (PT) and Penman-Monteith (PM) methods, which are in common use. Our objective here was 
not to present a performance hierarchy of PET datasets nor to identify which dataset might be better for a specific 
application. Each of the following datasets uses different definitions of PET and are therefore based on different 
formulations. Therefore, we make these PET comparisons to provide context about where our dataset fits in 
with existing ones generated at different spatial and temporal scales and by different methods. Specifically, we 
compare hPET to two other PET datasets based on the Penman-Monteith (PM) and two PET datasets based 
on the Priestley-Taylor (PT) method (Table 2). The PT method contains a coefficient, ‘alpha’, that represents the 
ratio between PET and the equilibrium evaporation, and as such it condenses the information contained in the 
aerodynamic part of the Penman–Monteith equation. It is often assumed to take a value of 1.26, as reported by 
Priestley and Taylor7 for well-watered grasslands, but it may vary based on vegetation type and higher values have 
been reported in advection regions41,42. The CRU_TS4.03 (ref. 43) is based on the FAO ET0, and thus uses a PM 
formulation assuming certain reference crop characteristics. This formulation is thus analogous to that of hPET 
(see Eq. 1), and it does not require the estimation of aerodynamic resistance. The MOD16 PET dataset is based on 
the PM formulation44, which parameterizes the aerodynamic resistance based on leaf area index and temperature 
information. On the other hand, the Global Land Evaporation Amsterdam Model (GLEAM)45 is based on a PT 
equation in which the alpha is land cover dependent. In GLEAM interception loss is estimated independently 
from the PET and not included within the PET estimates. The PT-JPL model46 uses the PT approach to estimate 
potential evaporation. However, unlike GLEAM, it uses a constant alpha of 1.26 and incorporates the interception 
loss within the PET.

The PT formulation only considers the radiative component of the PM equation and therefore does not 
require the parameterization of aerodynamic resistance. This simplification results in an underestimation of PET 
when net radiation is either limited or is not the main source of energy for evaporation such as in high latitudes 
in winter time, or in deserts47. In those conditions, the PM equation, which still considers adiabatic sources of 
energy to drive evaporation, is usually regarded as a more accurate approach (e.g.32).

Note that we have not included in our comparisons the inherent PET product output from ERA5-Land (a 
variable called PEV), since it was apparently not created by the conventional PM or PT approaches emphasized 
here. It is not clear how this variable is produced, and our analysis shows it to be inconsistent with the collection 
of PM and PT datasets compared here, with climatological values twice the maximum of all other datasets (scale 
bar maximum value of 5000 mm y−1 for PEV, compared to the of 2500 mm y−1 for all other datasets in Fig. 1). 
Therefore, we do not believe it represents a realistic and theoretically consistent estimate of PET for hydrological 
applications at the land surface.

The various PM and PT PET datasets compared here span different spatial and temporal resolutions, but they 
are broadly comparable (Fig. 1). The climatological comparisons, based on average annual PET for each 0.5° 
pixel over the global land surface, suggest that hPET has broadly similar geographical patterns to the other PM 
PET products, characterized by low PET values in northern latitudes due to low atmospheric energy availability 
and relatively high values in the equatorial regions and the global south (Fig. 1a–c). The hPET product compares 
closely with the CRU dataset (derived from gridded station data) as expected due to its common PET formu-
lation, while the MOD16 dataset shows higher PET values across the global south and the tropics. In contrast, 
the two PT datasets (Fig. 1d,e) tend to express much lower values of PET across these same southern regions of 
the globe, particularly for GLEAM, with slightly higher values for the PT-JPL dataset. The values of GLEAM are 
particularly low in forests, since its PET is defined excluding canopy interception (which is computed separately), 
and in deserts. The latter is a common feature of PT models, and it arises from the relatively low values of net 

Variable name

Number of values Value range

hourly daily hourly daily

time 8760 per year
8784 (leap years)

365 per year
366 (leap years)

00:00, 01/01/1981 to 
23:00, 31/12/2019

01/01/1981 to 
31/12/2019

latitude 1801 1801 90° to −90° 90° to −90°

longitude 3600 3600 −180° to 180° −180° to 180°

pet 8760 per year
8784 (leap years)

365 per year
366 (leap years)

00:00, 01/01/1981 to 
23:00, 31/12/2019

01/01/1981 to 
31/12/2019

Table 1. Variables, values, and ranges for hPET and dPET; times are in UTC.

Dataset Name
Spatial 
Resolution

Temporal 
Resolution

Temporal 
Domain Method

Data 
Source

CRU_TS4.03 PET (CRU) (https://crudata.uea.ac.uk/cru/data/hrg/) 0.5° 1 month 1901–2018 PM 43

MOD16 PET (MOD16) (http://files.ntsg.umt.edu/data/NTSG_
Products/MOD16/) 0.5° 8 days 2001–2020 PM 67

GLEAM3.3 PET (GLEAM) (https://www.gleam.eu/) 0.25° 1 day 1981–2018 PT 41,45

PT-JPL (http://josh.yosh.org/datamodels.htm) 0.5° 1 month 1986–1995 PT 68

hPET (https://doi.org/10.5523/bris.qb8ujazzda0s2aykkv0oq0ctp) 0.1° 1 hour 1981–2019 PM 40

Table 2. List of datasets used for comparison.
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radiation in deserts due to the high shortwave and longwave outgoing radiation, and the strong sensitivity of PET 
to net radiation in the PT formulation.

We also assessed the seasonal cycles for each of these datasets and show results for a range of sites across 
the globe to sample a range of humid and arid conditions across all continents (Fig. 2), classified by the Aridity 
Index48 (precipitation/PET). For comparison, we aggregated all datasets to common spatial (0.5°) and temporal 
(monthly) resolutions. Figures 3–5 show the mean monthly values, the distributions of all PET datasets calcu-
lated over the time span of each individual dataset, and ensemble means of all comparative datasets. We show the 
temporal domain (up to and inclusive of 2018) for each dataset (where applicable) common to PT-JPL (Fig. 3); 
MOD16 (Fig. 4); and hPET (Fig. 5).

Generally, we see more differences between PET datasets for arid regions compared to humid regions (Figs. 3–5),  
which largely reflects differences in the method of PET formulation. We also observe good seasonal correspond-
ence between hPET and CRU across all regions and a notable lack of correspondence with the PT datasets, and 
particularly GLEAM, due to the aspects discussed above (Figs. 3–5). More importantly, hPET seems to have a 

Fig. 1 Climatology of PET for comparative datasets. Mean annual PET for hPET and each comparative PET 
dataset. The datasets, described in Table 2, are: (a) hPET, (b) MOD16, and (c) CRU, all developed via the PM 
method; and (d) GLEAM and (e) PT-JPL, developed via the PT method. Note: the MOD16 dataset has missing 
values, which appear as white (e.g., Sahara Desert).

Fig. 2 Locations for more detail with aridity background. Map of Aridity Index48 (precipitation/PET) for humid 
(H1, H2, etc.) and arid (A1, A2, etc.) sites selected for seasonal comparisons of different datasets and to show 
diurnal cyclicity within hPET for contrasting climatic regions within each continent (excluding Antarctica).

https://doi.org/10.1038/s41597-021-01003-9
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N. America (H1)              AI:0.84 S. America (H2)              AI:2.15 Europe (H3)                    AI:1.25

Africa (H4)                      AI:0.72 Asia (H5)                         AI:1.08 Australasia (H6)             AI:2.19

N. America (A1)              AI:0.10 S. America (A2)              AI:0.11 Europe (A3)                   AI:0.29

Africa (A4)                      AI:0.17 Asia (A5)                         AI:0.05 Australasia (A6)             AI:0.06
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Fig. 3 Seasonal variations in PET for comparative datasets. Monthly distributions of PET for hPET and 
comparative datasets over the temporal domains listed in Table 2. Distributional medians are shown as white 
horizontal lines. Sample PET data, aggregated to common spatial (0.5°) and temporal (1 month) resolutions, 
separated according to humid versus arid locations on each study continent (N. America, S. America, Europe, 
Africa, Asia, Australasia), as shown in Fig. 2. We show comparisons for 1986–1995, corresponding to the 
temporal domain of PT-JPL (note: some datasets were excluded from comparisons due lack of data for relevant 
temporal domains). Aridity Index (AI) values (from Fig. 2) are listed next to the site labels for context. Monthly 
ensemble seasonal distributions of PET are shown (above), as well as boxplots (below) that summarize all 
the data comparing all values. The datasets used for comparison are listed in Table 2. Note that we also show 
boxplots for ensemble mean distributions of PET from CRU, MOD16, GLEAM, and PT-JPL (as relevant) for 
each temporal period (in black and labeled ‘Combined’).

https://doi.org/10.1038/s41597-021-01003-9


7Scientific Data |           (2021) 8:224  | https://doi.org/10.1038/s41597-021-01003-9

www.nature.com/scientificdatawww.nature.com/scientificdata/

seasonal and overall distribution that is broadly similar to that of the ensemble mean of comparative datasets 
(‘Combined’), for both arid and humid regions across the globe (Figs. 2–5). There are notable exceptions for the 
arid site in Asia (A5) for the PT-JPL time domain (Fig. 3) and the humid site in Asia (H5) for the hPET domain 
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Fig. 4 Seasonal variations in PET for comparative datasets. Monthly distributions of PET for hPET and 
comparative datasets over the temporal domains listed in Table 2. Distributional medians are shown as white 
horizontal lines. Sample PET data, aggregated to common spatial (0.5°) and temporal (1 month) resolutions, 
separated according to humid versus arid locations on each study continent (N. America, S. America, Europe, 
Africa, Asia, Australasia), as shown in Fig. 2. We show comparisons for 2001–2018, corresponding to most of 
the temporal domain of MOD16 (note: some datasets were excluded from comparisons due lack of data for 
relevant temporal domains). See caption for Fig. 3 for other relevant information.
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(Fig. 5), both of which show poor correspondence between the ensemble (black) and hPET (green) most mark-
edly expressed for the summer months. We also note that there is generally closer agreement between all datasets 
for the PT-JPL time domain (Fig. 3), compared to the others that capture the more recent period.
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Fig. 5 Seasonal variations in PET for comparative datasets. Monthly distributions of PET for hPET and 
comparative datasets over the temporal domains listed in Table 2. Distributional medians are shown as white 
horizontal lines. Sample PET data, aggregated to common spatial (0.5°) and temporal (1 month) resolutions, 
separated according to humid versus arid locations on each study continent (N. America, S. America, Europe, 
Africa, Asia, Australasia), as shown in Fig. 2. We show comparisons for 1981–2018, corresponding to most 
of the temporal domain of hPET (note: some datasets were excluded from comparisons due lack of data for 
relevant temporal domains). See caption for Fig. 3 for other relevant information.
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This evaluation demonstrates that hPET reproduces an overall pattern of global PET variability in a manner 
consistent with existing datasets, while simultaneously bringing additional insight into sub-daily and local var-
iability. It is worth reiterating that we do not present these datasets comparisons to suggest any hierarchy, but 
merely to highlight how they differ for different regions of the globe and over seasonal timescales. The fact that 
PET is a notional concept, and that different datasets follow different definitions of this variable, prevents us from 
making statements of comparative data quality. Nonetheless, the higher temporal and spatial resolutions, as well 
as the robustness of the seasonal and geographical patterns, indicate that hPET is a valuable addition to the cur-
rent palette of available PET products.

Next, we investigated hPET’s ability to capture diurnal cyclicity of PET across the globe, since the sub-daily 
resolution is an important feature of the new dataset. As expected, the ensemble diurnal cycles in hPET show 
values peaking just after noon for most months of the year at all our selected locations of the globe (Figs. 6 and 7),  
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Fig. 6 Diurnal cycles of hPET for humid regions. Diurnal cycle of hPET for humid regions on each continent 
for each month of the year, where each panel refers to a location shown in Fig. 2 (indicated on each y-axis). Pink 
shading indicates the standard deviation around the diurnal values of hPET based on the multi-decadal time series.
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representing the increasing evaporative demand in daylight hours. We also spot clear differences in diurnal peaks 
between regions, for example, for humid regions of Africa and Europe (Fig. 6), and recognize that the magnitude 
of the peaks varies seasonally depending on the strength of solar radiation (e.g., contrasts between arid regions of 
North America and South America, Fig. 7). Finally, we observe that most of the variability in these monthly-mean 
diurnal cycles occurs around the daily peak.

Finally, we offer three examples of how hPET could be useful for a range of applications. We focus on the util-
ity of hPET on topics of rainfall intensity, ecohydrology, and drought propagation. First, rainstorms have intensi-
ties that are dependent on the moisture in the atmosphere, which is in turn dependent on both moisture supply 
from land and evaporative demand in the atmosphere. Rainfall intensity is changing with shifts in global atmos-
pheric temperatures and is highly sensitive to the short-term variations of energy supply and atmospheric water 
vapor demand49–51. Recent research has shown that the Clausius-Clapeyron relation between air temperature and 
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month of the year, where each panel refers to a location shown in Fig. 2 (indicated on each y-axis). Pink shading 
indicates the standard deviation around the diurnal values of hPET based on the multi-decadal time series.
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moisture-holding capacity has different scaling relationships for different regions and that it may be most easily 
detected at high temporal resolution52,53. Our new hPET dataset shows promise for untangling this problem 
through analysis of high-resolution PET (hPET) alongside high-resolution rainfall data and/or by using these 
data to drive models to explore the relationships between evaporative demand and rainfall. Furthermore, hPET 
may be used as an atmospheric energy layer within stochastic rainstorm generation models that simulate precip-
itation fields with varying intensity16,22,54. The use of such high-resolution rainfall generators alongside datasets 
such as hPET will provide better constraints on land surface hydrology (e.g., cycles of wetting and drying) span-
ning diurnal to multidecadal variations.

Second, hPET could be useful in the analysis of the control of atmospheric demand for water on transpiration 
and plant water stress25,55,56. Since transpiration is downregulated by the high atmospheric demand for water 
causing plant stomata to close, PET could be an important determinant of plant water stress. Having atmospheric 
demand data at sub-daily resolutions is critical to disentangle the stomatal effect from the effect of low soil water 
availability, which does not exhibit a daily cycle. While root zone water availability may or may not increase in 
the future for many regions57,58, the atmospheric demand is increasing in most places55,59. The new hPET dataset 
enables the analysis of historical evaporative demand alongside plant-level or canopy-level responses to water 
availability over diurnal cycles, which could aid in understanding how vegetated environments might evolve 
under climate change that especially impacts atmospheric evaporative demand56,60.

Third, the propagation of meteorological drought into agricultural and hydrological droughts is of critical 
importance to human society, especially in dryland regions61–63, and future droughts may threaten broad areas 
of the globe64. Droughts develop due to progressive losses of water through atmospheric evaporative demand 
without replacement from rainfall. Irrespective of trends or changes in rainfall, droughts may arise solely due 
to shifts in atmospheric demand for water vapor55,65, and there are ongoing debates about whether we should 
expect increasing drought hazard/risk in the future34,66. Nevertheless, onset, propagation, and severity of droughts 
are closely tied to the complex feedbacks between precipitation, PET, soil moisture, and vegetation, which may 
develop and intensify over diurnal cycles, yet the detailed mechanisms are not well understood55. Therefore, hPET 
could be a valuable tool for retrospective analysis of past droughts via data and/or models, to develop and refine 
drought metrics, and also as cautionary guidance for what we may expect in future drought scenarios for specific 
regions.

These examples illustrate that hPET will be a useful new PET product for analysis of the water balance at high 
spatial and temporal resolutions. We have shown its ability to capture: 1) broad geographical patterns of PET cli-
matology comparable to similar products; 2) seasonal variations of PET across the globe, broadly comparable to 
an amalgamation of comparable datasets, and 3) diurnal cyclicity required to resolve water balance changes over 
fine temporal resolutions. We have also highlighted some examples of how hPET could be used, out of a wider 
range of potential applications related to the assessment of climatic impacts at the land surface.

Code availability
The codes we developed for computing hPET and dPET are available at https://github.com/Dagmawi-TA/hPET. 
In addition, we are providing users with a simple Python script to enable easy access to specific parts of the 
complete hPET and dPET datasets, based on user needs. This latter script allows the user to specify a geographical 
box and a selection of years for which data are required. The code then accesses the raw data files and downloads 
the data for relevant temporal and spatial domains from an open-access data server (https://doi.org/10.5523/bris.
qb8ujazzda0s2aykkv0oq0ctp). Since the data are freely available, one can download the script and run it on a local 
machine to download all or a portion of the data. The scripts are all documented, and readme files are provided 
from the relevant repository.
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