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Improving assessments of droughts risk for smallholder farmers requires a better

understanding of the interaction between individual adaptation decisions and drought

risk. Agent-based modeling is increasingly used to capture the interaction between

individual decision-making and the environment. In this paper, we provide a review of

drought risk agent-based models with a focus on behavioral rules. This review leads to

the conclusion that human decision rules in existing drought risk agent-based models are

often based on ad hoc assumptions without a solid theoretical and empirical foundation.

Subsequently, we review behavioral economic and psychological theories to provide a

clear overview of theories that can improve the theoretical foundation of smallholder

farmer behavior and we review empirical parameterization, calibration, and validation

methods of those theories. Based on these reviews, we provide a conceptual framework

that can give guidance for the integration of behavioral theories in agent-based models.

We conclude with an agenda to guide future research in this field.

Keywords: agent-based model (ABM), drought risk assessment, behavioral theory, adaptation behavior, human

decision-making, smallholder farmer

INTRODUCTION

As a result of climate change, the intensity, and duration of droughts are likely to increase in several
regions around the world, particularly in low- and middle-income countries in tropical regions,
which are disproportionally affected by climate change (Mendelsohn and Williams, 2006; Morton,
2007; IPCC, 2012; CRED and UNDRR, 2020). One of the most vulnerable groups to the potentially
devastating impact of such droughts, are smallholder farmers in the rural areas in these countries.
Such smallholder farmers often have a relatively low capacity to adapt, and this capacity to adapt is
further hampered by recurring droughts that reduce the agricultural productivity on which they
rely for subsistence and income (Morton, 2007; IFAD and UNEP, 2013; Donatti et al., 2018).
Despite these disproportionate adverse effects on smallholder farmers, the majority of the research
on the impact of climate change on agriculture has been done in industrialized countries (Claessens
et al., 2012; van Valkengoed and Steg, 2019). To address this research gap, more knowledge is
required on the intertwined evolution of drought risk and smallholder farmer adaptation decisions
under climate change in low- and middle-income countries.

Drought risk depends on the interaction between hazard, exposure, and vulnerability (IPCC,
2012). A drought risk assessment, both in general and for smallholder farmers, therefore involves
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an analyses of the interactions between physical and societal
processes, which requires integration of natural and social
sciences (Van Loon et al., 2016). Traditional drought risk
models, originated in natural sciences, focus on the hydro-
meteorological drought hazard and therefore neglect important
influences of human adaptation behavior, such as smallholder
farmers changing their land use (Hagenlocher et al., 2019;
Wens et al., 2019). The social-hydrological literature aims to
improve the realism of hydrological modeling by studying the
interactions and feedbacks between natural and human systems
(Sivapalan et al., 2012; Blair and Buytaert, 2016). Human
behavior is, however, often represented as rational behavior
of a homogeneous group in existing social hydrological risk
assessment approaches (Di Baldassarre et al., 2015; Wens et al.,
2019). Individual adaptation decisions are, in reality, found to
be heterogeneous in space and time; they differ widely across
regions, leading to different patterns of risk (Gebrehiwot and
van der Veen, 2015; Huber et al., 2018). Moreover, multiple
empirical studies show that individual adaptation decisions often
cannot be explained by economic rational behavior; decisions are
influenced by individual perceptions and attitudes and bounded
rationality (Keshavarz andKarami, 2016;Malawska and Topping,
2016; Van Duinen et al., 2016; Wens et al., 2020).

An approach that allows to better represent the evolvement
of drought risk by capturing bounded rationality, differences
in individual decision-making and interactions and feedbacks
between individuals and their environment is agent-based
modeling (An, 2012; Filatova et al., 2013; Aerts et al., 2018; Huber
et al., 2018). In recent years, agent-based models (ABMs) have
gained popularity in studies on coupled human-natural systems,
such as studies on flood risk assessment (Haer et al., 2019; Aerts,
2020), land use change (Groeneveld et al., 2017) or drought
risk assessment (see Table 1). An ABM explicitly models each
individual agent and its (mal-)adaptation decisions. Based on
decision rules, each agent responds to environmental states and
has the capacity to adapt decisions based on changes in other
agents or the environment (Matthews et al., 2007; Wens et al.,
2019). A challenge in agent-based modeling is however to select
realistic human decision rules (Filatova et al., 2013; Schlüter et al.,
2017). Decision rules are often based on ad hoc assumptions
of human behavior without sufficient empirical and theoretical
foundation (Müller et al., 2013; Groeneveld et al., 2017; Schulze
et al., 2017; Schwarz et al., 2020). A better representation of
the complex human decision-making process can be reached
when decision rules are based on behavioral economic and
psychological theories that can be calibrated with empirical
methods (An, 2012; O’sullivan et al., 2016; Groeneveld et al.,
2017; Schulze et al., 2017; Muelder and Filatova, 2018). It can,
however, be a challenge for modelers, who often do not have a
social science background, to select the relevant theory among
the many competing decision-making theories (Filatova et al.,
2013; Aerts, 2020).

Several ABMs apply decision theories in the context of
adaptation behavior of smallholder farmers (e.g., Van Duinen
et al., 2016; Hailegiorgis et al., 2018; Pouladi et al., 2019;
Wens et al., 2020), but different modelers have different
interpretation of the same theories. Modelers often build their

own models from scratch focusing on specific cases, which
makes it difficult to compare studies and to learn general
lessons (O’sullivan et al., 2016; Muelder and Filatova, 2018).
So far, there has been no clear overview of theories that
are suitable to describe adaptation behavior of smallholder
farmers in ABM and there are no clear guidelines on the
selection, integration, and calibration of the theories. The aim
of this paper is to (1) review existing agent-based drought risk
models with a focus on human decision rules, to (2) provide
an overview of economic and psychological decision-making
theories that are suitable to model adaptation behavior, and
(3) to guide future research on drought risk assessments for
smallholder farmers by developing a conceptual framework
for the integration of adaptation behavior, based on decision-
making theories and calibrated by empirical observations,
in ABMs.

LITERATURE REVIEW ADAPTATION
BEHAVIOR IN DROUGHT RISK ABMS

ABMs have been introduced in the coupled human-natural
systems literature to better capture the actions, interactions,
and feedbacks between individual decision-makers and the
environment (Aerts et al., 2018). The ABM approach also gives
the possibility to account for more realistic bounded rationality
and heterogeneity in individual behavior, in contrast to the
commonly used, but less realistic, rational utility maximizing
behavior (Filatova et al., 2013; Schlüter et al., 2017).

Acosta-Michlik and Espaldon (2008) are one of the first
to apply agent-based modeling to model human adaptation
behavior to climate change. They contribute to the advancement
of vulnerability concepts by assessing the vulnerability of farmers
in the Philippines and assessing adaptation options to reduce
vulnerability. Acosta-Michlik and Espaldon (2008) demonstrate
that ABM can be a useful tool to simulate the effect of adaptation
options on reducing climate change vulnerability. Later studies
applied agent-based modeling specifically to drought adaptation
behavior. Van Loon et al. (2016), Hailegiorgis et al. (2018),
Wens et al. (2020) and Zagaria et al. (2021) combine a human
decision making model with an agricultural model that estimates
crop yield based on hydrological conditions, meteorological
data and farm water management. Van Duinen et al. (2016)
and Wens et al. (2020) demonstrate that the selection of the
decision rule has a large impact on the model outcome and
that decision rules based on bounded rationality better represent
actual behavior in their case study areas than decision rules based
on rational behavior. Hailegiorgis et al. (2018) and Zagaria et al.
(2021) focus on the impact of different climate scenarios on
the decision of farmers and demonstrate that climate change
expectation and drought risk perceptions are important drivers
of adaptation behavior.

Next to the ABMs on drought and climate adaptation, a
related group of ABMs focus on water resource management in
the context of water scarcity. Berger et al. (2007) demonstrate
that ABM can be a useful approach to support water resource
management, by coupling an ABM on water use behavior with

Frontiers in Water | www.frontiersin.org 2 September 2021 | Volume 3 | Article 686329

https://www.frontiersin.org/journals/water
https://www.frontiersin.org
https://www.frontiersin.org/journals/water#articles


Schrieks et al. Decision-Making in Drought Risk ABM

TABLE 1 | Overview of drought risk agent-based models.

References Main output Agents Adaptation

measures

Theory Parameterization

and Calibration

Output Validation Location

Wens et al. (2020) Drought risk F Long-term EUT, PMT Expert knowledge,

social surveys,

interviews.

Historical data on

average maize yields

and poverty

Kitui, Kenya

Van Duinen et al.

(2016)

Agricultural income,

Water demand

F Long-term CM Interviews, surveys,

expert knowledge.

– Zeeland, The

Netherlands

Hailegiorgis et al.

(2018)

Adaptive capacity of

households

F Short-term PMT Census data and

scientific literature

Face-validity tests.

Historical data and

field visits

South Omo Zone,

Ethiopia

Acosta-Michlik and

Espaldon (2008)

Vulnerability to

global environmental

change

F,G Government policies CM Interviews, social

surveys and cluster

analysis

– Tanauan City,

Philippines

Pouladi et al. (2019) Amount of water

reaching Urmia Lake

through Zarrineh

river

F Long-term TPB Interviews, social

surveys and cluster

analysis

Observed

time-series of river

discharge

Zarrineh River/Urmia

lake, Iran

Mehryar et al. (2019) Impact of policies on

groundwater use

F,G Short-term,

long-term and

government policies

No FCM, interviews and

cluster analysis

Historical data on

groundwater use

Rafsanjan, Iran

Hyun et al. (2019) Irrigation decisions

under future climate

scenarios

F Short-term TPB Trial and error Historical

precipitation data

San Juan River

Basin, Upper

Colorado River

Basin, USA.

Zagaria et al. (2021) Transformational

adaptation to water

scarcity

F Short-term and

long-term

No Interviews and

Census data

– Romagna, Italia

Van Oel et al. (2012) Spatial distribution

of water availability

and water use

F, G Short-term No Social surveys Reservoir volumes,

land use (remote

sensing)

Jaguaribe basin,

Brasil

Castilla-Rho et al.

(2017)

Groundwater F, R Government policies No World value survey Survey data of one

basin

Global

Ghoreishi et al.

(2021)

Yearly Agricultural

Water Demand

F, G Short-term and

long-term

No Empirical data on

water demand and

irrigation system

area

Empirical data on

cropping patterns.

Qualitative data from

existing reports and

interviews

Bow River Basin,

Canada

Agents: F, Farmer; G=Government R, Regulator. Theory: EUT, Expected Utility Theory; PT, Prospect Theory; PMT, Protection Motivation Theory; TPB, Theory of Planned Behavior;

CM, Consumat.

a water run-off and crop growth model. (Schlüter and Pahl-
Wostl, 2007) develop an ABM to assess different types of water
management regimes. Van Oel et al. (2012) couple an ABM on
land use and irrigation decisions with a model on water levels
in the river basin of the Jaguaribe River in Brasil, to analyze
the feedback mechanisms between water availability and water
use under decreasing rain fall scenarios. Their model shows
that a decrease in rainfall and runoff leads to a transition of
water use from the dry to the wet season which increases water
scarcity in the dry season. Other studies that couple an AMB
on water use behavior to a model on water levels in a river
basin, analyze how water use behavior influences restoration of
the environment (Pouladi et al., 2019), study the role of risk
perception in water management decisions (Hyun et al., 2019), or
research the impact of changes in cropping patters and irrigation
systems on agricultural water demand (Ghoreishi et al., 2021).
Castilla-Rho et al. (2017) and Mehryar et al. (2019) also model

water use under water scarcity conditions, but instead of water
use in a river basin they model groundwater use. The aim of these
models is to analyze the impact of ground water conservation
policies on groundwater use.

To get a better understanding of human-decision making
in drought risk ABMs, we made a more detailed comparison
of the components of the human-decision making module
in a selection of recent ABMs. All selected papers couple
a human decision-making module, describing the behavior
of heterogeneous agents, with a hydrological module, which
captures the drought hazard. Table 1 gives an overview of all
selected papers.

We start with a description of agents that are involved
in the models, followed by a description of adaptation
measures, behavioral theories and, parametrization, calibration,
and validationmethods. Tomake a comparison, we examined the
model descriptions in the papers and, if available, the descriptions
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in the ODD (Grimm et al., 2010) and ODD+D (Müller et al.,
2013) protocols1.

Agents
The central agents in the reviewed ABMs are the individual
farmers (pastoralist, agro-pastoralists or agriculturalists)
who make the final adaptation decisions and interact with
other farmers in their social network. The behavior of
farmers is, however, also influenced by several other agents.
Important agents in the context of drought ABMs can be
government officials (e.g., policymakers or regulators), economic
and financial institutions (e.g., insurers, banks, and donor
organizations) and domestic or industrial water users (Kaiser
et al., 2020). While the government is included in several of the
reviewed studies (Van Oel et al., 2012; Castilla-Rho et al., 2017;
Mehryar et al., 2019; Ghoreishi et al., 2021), the other types
of agents are not. The studies that do include a government
(policymaker, regulator or allocation committee) generally do
not model governments as endogenous agents, but include
different scenarios of government policies as exogenous elements
that influence the decision making process. The models thus
focus on the decision-making of the farmers and do not include
a dynamic interaction between farmers and other agent types.

Adaptation Measures
Several different types of adaptation measures are included in
the papers in Table 1. Some of the papers include short-term
managerial adaptation decisions, such as the timing of land
preparation, planting, and harvesting (Van Oel et al., 2012;
Hailegiorgis et al., 2018), decisions on irrigation area (Hyun
et al., 2019; Ghoreishi et al., 2021; Zagaria et al., 2021) and
adding purchased water to the land or updating well depth
(Mehryar et al., 2019). Most of the reviewed papers focus,
however, on longer-term decisions which require investments in
new technology, with for example selecting alternative (drought
resistant) crop types (Pouladi et al., 2019; Ghoreishi et al., 2021;
Zagaria et al., 2021), well deepening (Mehryar et al., 2019; Wens
et al., 2020), freshwater storing (Van Duinen et al., 2016; Wens
et al., 2020), changing farm size (Mehryar et al., 2019; Zagaria
et al., 2021) and investing in irrigation systems (Van Duinen
et al., 2016; Mehryar et al., 2019; Wens et al., 2020; Ghoreishi
et al., 2021). These longer-term measures require investments
that have a long-term impact with an uncertain outcome. Capital
availability, risk perception, and risk preferences are therefore
important factors in the decision-making process of the farmer.
A third type of adaptation measures included in some models
involves government policies, such as policies on farm size and
irrigation systems (Mehryar et al., 2019), allocation of water
rights (Castilla-Rho et al., 2017) and financial support (Acosta-
Michlik and Espaldon, 2008).

1We could not find an ODD or ODD+D protocol for Acosta-Michlik and

Espaldon (2008), Ghoreishi et al. (2021) and Pouladi et al. (2019). Mehryar et al.

(2019) and Van Oel et al. (2012). followed the ODD (Overview, Design concepts

andDetails) and all other selectedmodels did use theODD+D (ODD+Decisions)

protocol, which provides a more detailed description of human decision-making.

Behavioral Theories
Some of the reviewed papers have based the human decision-
making module on psychological theories that describe the
cognitive processes behind the adaptation decisions. Wens et al.
(2020), Zagaria et al. (2021) and Hailegiorgis et al. (2018) use the
protection motivation theory of Rogers (1983), which assumes
that farmers’ intention to adapt depends on the threat appraisal
and coping appraisal. Pouladi et al. (2019) and Hyun et al.
(2019) use the theory of planned behavior (Ajzen, 1991), which
assumes that adaptation intentions are influenced by someone’s
attitude, subjective social norms and perceived control over
the situation. Van Duinen et al. (2016) and Acosta-Michlik
and Espaldon (2008) build a behavioral module based on the
Consumat approach (Jager et al., 2000), a method to classify and
describe different types of bounded rational behavior influenced
by the social network.

The description of the theory and the argumentation for the
selection of the theory is however often limited and there is quite
some variation in the interpretation of the theories. Wens et al.
(2020), Zagaria et al. (2021) and Hailegiorgis et al. (2018) apply
the same theory, but they use different proxy variables for the
different elements of the theory and Van Duinen et al. (2016) and
Acosta-Michlik and Espaldon (2008) use two different version
of the Consumat approach. These differences in interpretation
make it difficult to make a comparison between the different
models. Wens et al. (2020) and Van Duinen et al. (2016) compare
bounded rationality in respectively the protection motivation
theory and the Consumat approach with rational choice theory
and conclude that these psychological theories with bounded
rational behavior provide a more realistic estimation than the
models with rational behavior. They however only include
the very restrictive rational choice theory that assumes full
rationality and do not compare the psychological theories with
less restrictive economic theories such as subjective expected
utility theory (Fishburn, 1981) or prospect theory (Kahneman
and Tversky, 1979).

The papers that do not include a specific behavioral
theory develop ad hoc decision rules based on simple
heuristics. Ghoreishi et al. (2021) emphasize the importance of
including bounded rationality instead of rational behavior, but
subsequently they only include a few simple decision rules with
simple elements of bounded rational behavior without building
on established behavioral theories. The main disadvantages of
using ad hoc decision rules that are not grounded in behavioral
theories are that a comparison between different models cannot
be made and important elements in the decision-making process,
that have been studied extensively in social sciences, may be
missed. In Section Behavioral Theories we give a more elaborate
description of different behavioral theories and how they can be
applied in an ABM.

Parameterization, Calibration and
Validation Methods
Parameterization, calibration and validation of the coupled
models is one of the main challenges in agent-based modeling
(Smajgl et al., 2011; Smajgl and Barreteau, 2017; Venkatramanan
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et al., 2018; Aerts, 2020). For parameterization and calibration,
most of the reviewed models rely on their own fieldwork with
a combination of expert interviews and household surveys.
Alternative approaches that have been used are fuzzy cognitive
mapping that links important variables (Mehryar et al., 2019),
or calibration based on existing data, such as the world value
survey (Castilla-Rho et al., 2017), census data (Hailegiorgis et al.,
2018) or water demand data (Ghoreishi et al., 2021). Cluster
analysis is applied in several of the models to define different
agent types based on household characteristics in household
surveys or census data (Acosta-Michlik and Espaldon, 2008;
Mehryar et al., 2019; Pouladi et al., 2019; Zagaria et al., 2021).
For validation, several studies compare the model estimates with
historical data on, e.g., average yield (Wens et al., 2020), river
discharge (Pouladi et al., 2019) reservoir volumes (Van Oel et al.,
2012), or groundwater use (Mehryar et al., 2019). A challenge
with output validation with historical data is however that those
datasets often only contain aggregated information and therefore
cannot capture behavior of heterogeneous individuals (Claessens
et al., 2012). In Section Empirical Methods for Parameterization,
Calibration, and Validation, we discuss some alternative methods
that are more suitable for the calibration and validation of
economic and psychological theories.

BEHAVIORAL THEORIES

Some of the reviewed papers have based their behavioral modules
on economic or psychological theories, but most of them
base their decision rules on empirical observations or ad hoc
assumptions, without modeling the underlying cognitive process.
Improving the integration of human behavior in ABMs requires
a more elaborate behavioral module that has a theoretical
foundation. A first challenge for a modeler is to select the
relevant behavioral theory, among the many theories that have
been developed by social scientists (Schlüter et al., 2017).
In this section we describe the most relevant economic and
psychological theories for modeling drought risk adaptation of
smallholder farmers in an ABM. The selection of the theories is
based on the review of agent-based models above and a literature
search on theories that have been applied in social science
literature on adaptation behavior of farmers. We discuss two
economic theories: expected utility theory (EUT) and prospect
theory (PT), which are the two most prominent theories on
decision-making under risk in (behavioral) economics and have
been applied in several ABMs (Groeneveld et al., 2017; Schlüter
et al., 2017); two psychosocial theories, theory of planned
behavior (TPB) and protection motivation theory (PMT), which
have also been used in ABMs to model adaptation behavior
(e.g., Hailegiorgis et al., 2018; Pouladi et al., 2019; Wens et al.,
2020); and the Consumat framework (Jager et al., 2000), which
combines elements from several psychological and economic
theories, and has been used in two of the reviewedABMs (Acosta-
Michlik and Espaldon, 2008; Van Duinen et al., 2016).

Expected Utility Theory
Expected utility theory (EUT) is the traditional economic theory
on decision-making under risk and has been applied in different

contexts (Machina, 2008; Sen, 2008). Several ABMs on coupled
human-natural systems make use of EUT to model human
behavior (Groeneveld et al., 2017; Aerts, 2020). This theory,
developed by Von Neumann and Morgenstern (1947), is based
on the assumption that people are rational decision makers
who will always select the option that gives them the highest
expected utility. People have perfect information on the available
decision options, the likelihood of different outcomes, and the
corresponding gains and losses (Sen, 2008). In the context of
drought risk adaptation, this would mean that farmers have
perfect information on the available adaptation options and that
they consider the full distribution of risks, meaning that they
recognize the existence of different drought events with different
degrees of costs and likelihoods (Van Duinen et al., 2015b).
Farmers will make a ranking of the different options and select
the adaptation strategy that gives the highest expected utility
within their budget.

Using EUT in an ABM on drought risk assessment requires
to specify one or more adaptation strategies for the agents, with
the corresponding costs and benefits under different drought
impact scenarios. The agents select the strategy with the highest
(discounted) expected utility, within their budget constraint.
Expected utility is a function of wealth, the costs and benefits of
the adaptation strategy, which can depend on climate change, and
potential residual losses. As an example (based on the examples
in Haer et al., 2017), consider a farmer who has to make a
choice betweenM adaptationmeasures (e.g., investing in drought
resistant crop types or irrigation) or not adopting a measure. The
discounted utility functions for those options are:

EU(no adaptation) =

∑T

t=0
δt

∑I

i=1
piU

(

Wt − Li,t
)

(1)

EU
(

adaptation m
)

=

∑T

t=0
δt

∑I

i=1
piU

(

Wt − Ri,m,t − Cm,t

)

(2)

The utility U(x) of the farmer is a function of his wealth which
depends on the drought impact and the choice of the adaptation
measure m. The expected utility is a summation of the utility of
all possible states of the world i that occur with probability pi.
The states of the world in this example are the possible drought
events with different magnitudes that can occur and the situation
with no drought. Wt is the initial wealth of the farmer at time t
and Li,t is the loss of drought event i at time t, when the farmer
did not invest in the adaptation measure. Cm,t is the net cost
of investing in adaptation measure m at time t, and Ri,m,t is the
residual loss of drought event i when the farmer has invested
in adaptation measure m. In general the residual (Ri,m,t) loss
should be smaller than the loss (Li,t) without the adaptation
measure and both Ri,m,t and Li,t should be zero when no drought
occurs2. The adaptation measures are evaluated over T periods,
which represents the lifetime of the adaptation measure. Future

2Rm,i,t differs per type of adaptation measure. Somemeasures only have an effect in

extreme drought events, while other also have a positive or negative effect in cases

of moderate or no droughts. This differences in adaptation measures at different

stages can all be captured in Rm,i,t.This could then also result in a positive Ri,m,t

(gain) or a larger loss than without an adaptation measure for specific drought (or

non-drought) events.
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periods are discounted with discount rate δ, because people are
generally assumed to put more weight on current wealth than
on future wealth (Frederick et al., 2003). Different agents can
have different time-preferences, which can be represented in an
ABM by assigning different discount rates to different (groups
of) agents. The farmer will select the option that gives the highest
expected utility within the following budget constraint:

Cm,0 ≤

∑T

t=0

1

(1− r)t
(Wt −

∑I

i=1
piRi,m,t) (3)

With r being the interest rate for loans on the capital market.
For farmers that do not have access to the capital market, which
might be realistic for smallholder farmers in low- and middle-
income countries, the budget constraint just becomes the wealth
at time 0 minus the expected loss from droughts (

∑I
i=1 piRi,m,t).

The budget constraint can be modeled heterogeneously across
farmers, for instance by varying initial wealth levelsWt.

Application of the EUT generally assume that people are
slightly risk averse, which is in line with empirical findings
(Bombardini and Trebbi, 2012), also in the context of climate
risk for smallholder farmers (Jin et al., 2016). A standard function
used in EUT is U (X) = X1−β/(1 − β), where the β represents
the level of constant relative risk aversion. An often used value
for β is 1 (e.g., Haer et al., 2017; Wens et al., 2020), in which
case the utility function is written as U (X) = ln(X). Empirical
estimates indicate that the average value for risk aversion is
indeed around 1 (e.g., Bombardini and Trebbi, 2012), but
the disadvantage of selecting one value for each agent is that
heterogeneity in risk aversion is ignored. Research shows that risk
aversion over modest stakes is different from risk aversion over
large stakes and that risk aversion decreases if wealth increases
(Binswanger, 1980; Rabin, 2000; Wik et al., 2004; Bombardini
and Trebbi, 2012). A more realistic representation of reality
could therefore be to include different values of risk aversion
for the different agents, for example by linking risk aversion to
household disposable income.

The assumption of perfect information, in the EUT of Von
Neumann andMorgenstern (1947), implies that farmers’ drought
risk perception is identical to the actual drought risk and can
therefore be fully predicted with objective drought risk factors
(Van Duinen et al., 2015b). Research shows that objective risk
factors are important determinants of risk perceptions, but
subjective factors such as the experience of previous droughts
and farmers’ individual sense of control are also important
risk perception determinants (Van Duinen et al., 2015b). The
influence of those subjective risk perception factors is not
included in traditional EUT. Most economic models therefore
apply subjective EUT, first developed by Savage (1954), which is a
variant of the theory with less strict assumptions on rationality.
Subjective EUT assumes that people are uncertain about the
probabilities of the occurrence of events and they make their
own estimation of those probabilities based on both objective
and subjective factors (Fishburn, 1981). This theory still has
the assumption that farmers are rational utility maximizers, but
they now maximize their utility based on their own subjective
estimations of probabilities of drought and drought losses. These

subjective estimates can be included in the model by varying the
probabilities pi per individual agent (Haer et al., 2019). Subjective
expected utility therefore includes the influence of risk perception
and allows to create heterogeneity between farmers in their
estimations of risk probabilities and severity.

Prospect Theory
Prospect theory (PT) is another often used theory in behavioral
economic research on decision-making under risk. PT was
developed by Kahneman and Tversky (1979) as a critique on
the EUT and then further developed by the same authors
and renamed into cumulative prospect theory (Tversky and
Kahneman, 1992)3. EUT assumes that utility of gains and losses
is based on absolute wealth and that individuals put the same
weights on gains and losses. PT, however, assumes that people
asses the utility of gains and losses as deviations from a reference
point and that there are differences in preferences for gains
and losses, such as loss aversion by which losses loom larger
in individual decisions than equivalent gains. Furthermore, PT
accounts for non-linear weighting of probabilities in decision-
making about risk (Tversky and Kahneman, 1992).

A farmer who has to make a decision about adaptation
measures will, according to PT, take his initial wealth as reference
point and assess the gains or losses of these measures by
comparing it with this reference point. The expected utility
functions for a farmer that has to decide between investing in
adaptation measure m and not investing in this measure (see
example in Section Expected Utility Theory) are:

PT
(

no adaptation
)

=

∑T

t=0
δt

∑I

i=1
πiV

(

−Li,t
)

(4)

PT
(

adaptation
)

=

∑T

t=0
δt

∑I

i=1
πiV

(

−Cm,t − Rm, i,t

)

(5)

The parameter πi represent the farmers’ subjective weighting of
the probability of drought event i. The standard function for
probability weighting in PT is (Tversky and Kahneman, 1992):

πi =
p
γ
i

(p
γ
i + (1− pi)

γ )
1/γ

(6)

The weighted probability πi would be the same as the
actual probability pi for γ = 1. Although probability
weighting functions can differ between contexts (Barberis, 2013),
Tversky and Kahneman (1992) find that people overweight
low probabilities and underweight higher probabilities which is
represented by a γ smaller than 1. The value for γ can differ per
agent to represent heterogeneity in probability weighting. V(X)
is the utility of the farmer compared to the reference point. The
general utility function in PT is:

v (x) =

{

xα if x ≥ 0

−λ (−x)β if x < 0
(7)

3For simplicity we refer to both prospect theory and cumulative prospect theory

with PT in this paper.
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The x in equation (7) represents the deviation from the reference
points, α and β are the utility curvature parameters and λ

represents the level of loss aversion. The loss aversion λ should be
larger than 1, whichmeans that losses have a bigger impact on the
utility than equivalent gains. Investing in adaptation measure m
costs Cm,t and therefore is considered as a loss of Cm,t compared
to the reference point. This loss will be Cm,t + Rm,i,t in case
of a drought4. In case of no drought and no investment in the
adaptation measure, there is no change in wealth compared to
the reference point, so there is no gain or loss. The farmer who
does not invest, only has a loss of Li,t when a drought occurs.
Just like in EUT, the adaptation measure is evaluated over T
periods, which is the lifetime of the measure, and future periods
are discounted with discount rate δ. The farmer will select the
option that gives the highest expected utility within their budget,
following the same budget constraint as in EUT (equation 3).

Theory of Planned Behavior
The Theory of Planned Behavior (TPB), developed by Ajzen
(1991), is a psychological theory that is regularly applied in
ABMs (Muelder and Filatova, 2018). The central factor in
the decision making process, according to this theory, is an
individual’s intention to perform certain behavior, which is
influenced by three factors (Ajzen, 1991, 2002b). The first factor
is attitude, which refers to the degree of personal, positive or
negative, evaluation of the behavior. In the contexts of drought
adaptations, these are the personal believes of the farmer about
the importance and usefulness of an adaptation measure for
his farm (Arunrat et al., 2016). The second factor is subjective
norm, which refers to the perceived social pressure to perform
the behavior i.e., do friends, neighbors, family or other people
who are important for the farmer expect him to invest in the
adaptation measure (Yazdanpanah et al., 2014; Arunrat et al.,
2016). The last factor is perceived behavioral control, which refers
to the believe of an individual in his own ability to implement
the intended decision i.e., does the farmer believe that he is able
to execute the adaptation measure (Yazdanpanah et al., 2014;
Arunrat et al., 2016). The stronger the intention, the more likely
that the farmer will perform the adaptation behavior. The actual
performance depends, however, also on the availability of the
required resources and skills, which Ajzen (1991) calls the actual
behavioral control.

A challenge of implementing TPB in ABMs is that attitudes,
subjective norms and intentions are rather subjective model
parameters and the original theory does not provide a
mathematical formalization (Schlüter et al., 2017; Muelder and
Filatova, 2018). Multiple studies have however successfully
integrated TPB in mathematical models (Scalco et al., 2018).
The basic equation for an individual’s intention to perform the
behavior (I), in accordance with Ajzen (1991), is a linear function
of attitude (A), subjective norm (SN) and perceived behavioral
control (PBC):

4Rm,i,t differs per type of adaptation measure. Somemeasures only have an effect in

extreme drought events, while other also have a positive or negative effect in cases

of moderate or no droughts. This differences in adaptation measures at different

stages can all be captured in Rm,i,t .

I = α ∗A+ β ∗SN + γ ∗PBC (8)

The actual behavior (B) is a function of the intention in equation
(8) and actual behavioral control (ABC):

B = δ ∗I + ε ∗ABC (9)

Perceived behavioral control can be used as a proxy to measure
actual behavioral control as long as a person has realistic
expectations about the difficulty of the behavior (Ajzen, 1991,
2002b).

The relative weights of the different factors (α, β, γ, δ, and
ε) depend on the behavioral context and can be estimated with
survey data and statistical methods such as regression techniques
or structural equation modeling (Hankins et al., 2000; Ajzen,
2002a; Scalco et al., 2018). The results of the empirical analysis
have to be translated in decision rules to use them in an ABM.
An example of the application of TPB in ABM in the context
of water conservation behavior can be found in Pouladi et al.
(2019) and Koutiva and Makropoulos (2016). In both of those
papers the farmer can choose between three conservation levels,
that are linked to the TPB value of the behavioral intention,
such that people with a high intention are most likely to
perform high conservation behavior, people with low intention
are most likely to perform no or low conservation behavior and
people with intermediate intention are most likely to take the
intermediate option.

Protection Motivation Theory
Another psychological theory that has been used in ABMs to
model farmer’s adaptation behavior (e.g., Hailegiorgis et al.,
2018; Wens et al., 2020; Zagaria et al., 2021) is the protection
motivation theory (PMT, Rogers, 1983). According to this theory,
a person’s intention to adapt depends on the threat (or risk)
appraisal and coping appraisal (Maddux and Rogers, 1983;
Rogers, 1983; Grothmann and Patt, 2005; Gebrehiwot and van
der Veen, 2015). The risk appraisal process consists of two sub
elements: the perceived probability and the perceived severity
of the evaluated events. In the context of a drought, perceived
probability refers to a person’s expectation of the chance of
getting exposed to a drought and perceived severity refers to
the expected magnitude of the drought impact if the drought
occurs (Keshavarz and Karami, 2016). The coping appraisal
process depends on a person’s belief in his own ability to
carry out the adaptation measure (perceived self-efficacy), the
believe in the effectiveness of the adaptation measure (perceived
response efficiency) and the perceived costs of the adaptation
measure (Van Duinen et al., 2015a; Wens et al., 2020). A persons
perceptions of the factors in both threat and coping appraisal
are influenced by personal characteristics and experiences and
influences from the social network (Rogers, 1983).

Rogers (1983) presents the protectionmotivation, or intention
to adapt, as an additive function of threat appraisal (TA) and
coping appraisal (CA), which can be translated into the following
linear function of the intention to adapt (I) for adaptation
measure m at time t:

It,m = α ∗ TAt + β ∗ CAt,m (10)
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A person will only implement a certain adaptation measure when
the threat appraisal and coping appraisal are high enough. This
can be modeled (a) with probabilities, the higher the intention to
adapt the higher the probability that the farmer actually invests
in the adaptation measure (e.g., Keshavarz and Karami, 2016), or
(b) with thresholds, the farmers only invests if intention to adapt
is above a certain threshold (e.g., Hailegiorgis et al., 2018). The
threat appraisal is an additive function of perceived probability
(PP) and perceived severity (PS) and the coping appraisal of a
measure is positively influenced by the perceived self-efficiency
(PSE) and perceived response efficiency (PRE) and negatively
influenced by the perceived costs (PC) of the measure.

TAt = γ ∗ PPt + δ ∗ PSt (11)

CAt,m = ǫ ∗ PSEt.m + ζ ∗ PREt,m − η ∗PCt,m (12)

The weights of the different variables (α, β, γ, δ, ε, ζ, η) depend
on the contexts of the adaptation decision and can be estimated
with statistical analysis of survey data. Applications of PMT in
ABMs often include proxy variables for some of the theoretical
components if survey data is not available for all components
(e.g., Hailegiorgis et al., 2018; Wens et al., 2020).

Consumat
Another approach that is used in a few ABMs on farmers’
decision-making is the Consumat approach (e.g., Acosta-Michlik
and Espaldon, 2008; Malawska and Topping, 2016; Van Duinen
et al., 2016). Consumat (Jager et al., 2000) is a conceptual
framework for the simulation of human behavior that combines
insights from multiple economic and social psychological
theories. An agents behavior in Consumat is based on the
satisfaction of needs and the ability to perform different types
of behavior (Jager et al., 2000; Jager and Janssen, 2012; Schaat
et al., 2017). The decision making process is modeled in two
steps. In the first step, the level of need satisfaction and level of
uncertainty is determined for each agent. Depending on these
levels of satisfaction and uncertainty, the agents will select one
out of four types of decision rules for their actual adaptation
behavior in the second step.

The level of need satisfaction depends on a combination of
needs. In an application of Consumat on harvest behavior, Jager
et al. (2002) include two needs: subsistence and leisure. In a later
version of Consumat (The Consumat II, Jager and Janssen, 2012),
they include three needs: existence, social and personality. Each
need has a value between 0 and 1, depending on how satisfied
the farmers is with this need, and follows a diminishing marginal
utility function (Jager et al., 2000, 2002). The value of need y for
farmer i at time t is:

Nyi,t = 1− exp(−αy,ixy,i,t) (13)

The value of αy,i indicates the sensitivity of individual i for need
y and xy,i,t represent the level of ‘consumption’ or fulfillment of
need y for individual i at time t. The total level of need satisfaction
is the product of the satisfaction value of all n different needs.

Ni,t =

∏n

y=1
Nyi,t (14)

The level of uncertainty is defined as the difference between the
expected value of consumption at time t – 1 and the actual value
of consumption at time t – 1.

Ui,t =
∣

∣E[xi,t−1]− xi,t−1

∣

∣ (15)

A disadvantage of the Consumat approach is that there are no
clear guidelines on which needs should be included and how they
should be measured. Applications of Consumat therefore use
different proxies to measure need satisfaction. More research is
required to test which needs are important to include and to come
to standardized formulas. An example of a proxy that can be used
in the context of drought risk adaptation behavior of farmers can
be found in the model of Van Duinen et al. (2016), in which
satisfaction of farmers is a function of current and future income.

Both need satisfaction and uncertainty are modeled as
threshold function. Depending on whether the level of
satisfaction and the degree of uncertainty are above or below
the threshold, a Consumat agent can have four different types
of decision strategies: repetition, imitation, deliberation and
social comparison (Jager et al., 2000; Van Duinen et al., 2016;
Schaat et al., 2017). An agent with high satisfaction and low
uncertainty will repeat his previous behavior and an agent with
high satisfaction and high uncertainty will imitate the behavior of
a similar agent. Agents with low satisfaction have to invest more
effort in improving the situation. They will engage in deliberation
when uncertainty is low, which means that they evaluate the
outcome of all possible decisions and select the decision that
results in the highest level of need satisfaction. An agent with low
satisfaction and high uncertainty will perform social comparison,
which involves comparison of their own previous behavior with
the behavior of other agents with similar abilities.

The deliberative strategy is equivalent to the traditional
economic assumption of rational behavior (e.g., the EUT decision
rules 1, 2, 3), while the other strategies describe habitual
behavior (i.e., repeating previous behavior) and influence of
social networks. The Consumat approach thus allows for switches
between rational and bounded rational decision strategies when
circumstances change (Jager et al., 2000; Van Duinen et al., 2016).
In the context of farmers’ decisions on drought adaptation this
allows for a more realistic modeling of changes in behavior
when drought risk changes. For example, an increase in droughts
because of climate change might cause a shift from habitual
behavior to deliberation or social comparison, because an
increase in droughts can decrease satisfaction and increase
uncertainty. The strategies described above are the four basic
strategy categories, but it is possible to include more variation in
these strategies with, for example, variations in the time-horizon,
discount-functions, and effect of expertise (Jager et al., 2000).

Heuristics and Biases
Research on behavioral economics and psychology has also
focused on the role of heuristics and biases in decision making
(Tversky and Kahneman, 1974; Gilovich et al., 2003; Gigerenzer
and Gaissmaier, 2011). People are often not able to analyze
all the available information to come to the optimal decision,
instead they use simple decision rules (heuristics) based on

Frontiers in Water | www.frontiersin.org 8 September 2021 | Volume 3 | Article 686329

https://www.frontiersin.org/journals/water
https://www.frontiersin.org
https://www.frontiersin.org/journals/water#articles


Schrieks et al. Decision-Making in Drought Risk ABM

limited information, which can lead to biases in their decisions
(Tversky and Kahneman, 1974). Climate change and its impact
on droughts is characterized with uncertainty and the availability
of reliable climate information is often limited especially for
smallholder farmers in low- andmiddle-income countries, which
makes it likely that those farmers to some degree base their
drought adaptation decision on simple heuristics (Waldman
et al., 2020). Decision rules in an ABM can be solely based
on simple heuristics (Deadman et al., 2004; Dobbie and Balbi,
2017). Using heuristics in ABMs can be useful when little data is
available about the decision making process, but some important
elements in the decision making process might be overlooked.
Instead of decision rules that are only based on heuristics, it is
also possible to combine the heuristics with a certain behavioral
theory as we discuss for some of the main decision heuristics in
the context of climate change risk (Botzen et al., 2021).

A heuristic that is likely to influence decision making in
the context of drought adaptation behavior is the availability
heuristic (Tversky and Kahneman, 1973). The availability
heuristic implies that people who experienced a severe drought
find it easier to imagine that they will be hit by a drought
again and therefore they indicate a higher perceived risk than
people who did not experience a drought (Waldman et al., 2019).
The availability heuristic can be included, for example, in PMT
by assuming that threat appraisal is influenced by memory of
previous droughts (Hailegiorgis et al., 2018; Wens et al., 2020).
It also has been included in SEUT and PT by making risk
perceptions dependent on disaster occurrence (Haer et al., 2017,
2019).

Another heuristic related to risk perceptions is the threshold
level of concern heuristic (Slovic et al., 1977). Individuals
that follow this heuristic do not make a rational assessment
of the full risk distribution, but instead only take adaptation
measures when their perceived disaster probability comes above
a certain threshold. This heuristic has been incorporated in PT
by making the probability weighting function of natural hazard
risks dependent on this threshold (Robinson and Botzen, 2020)
and is indirectly incorporated in some applications of PMT, who
assume that people only consider an adaptation measure if the
threat appraisal has reached a specific threshold (e.g., Grothmann
and Patt, 2005). The threshold level of concern heuristic is
also related to the Consumat framework, where agents only
decide to apply a more cognitive demanding strategy if the need
satisfaction is below a certain threshold (Jager et al., 2000).

Another heuristic that might be relevant to include in the
context of adaptation to extreme droughts is myopia, which refers
to a short term focus leading to overweighting of upfront costs
and underweighting of future benefits of adaptation investments
(Gneezy and Potters, 1997). Myopia can be incorporated in the
discounted (subjective) EUT and PT frameworks through a high
discount rate or short time horizon T. Moreover, herding, which
refers to the observation that decision are often influenced by
people in their social network (Meyer and Kunreuther, 2017) is
a heuristic that is already included in the Consumat framework,
where people with high uncertainty will follow either an imitation
or social comparison strategy, and indirectly in TPB through
subjective norms.

EMPIRICAL METHODS FOR
PARAMETERIZATION, CALIBRATION, AND
VALIDATION

In this section we discuss the literature on parameterization,
calibration, and validation of the above mentioned behavioral
theories and we discuss the advantages and disadvantages
of these methods in the context of agricultural drought
risk ABMs.

The difference between parametrization, calibration and
validation is not always clear in the literature, because varying
definitions are used. In this paper, parameterization refers to
the selection of model parameters and assigning values to
those parameters in the early stages of model development
(Smajgl et al., 2011; Smajgl and Barreteau, 2017). The calibration
process comes after that and involves fine-tuning of the model
parameters including those of behavioral rules grounded in
decision theories by identifying a range of values that is consistent
with input data. The final phase is the validation phase which
entails the evaluation of model outcomes with independent data
or information (Xiang et al., 2005; Ngo and See, 2012; Smajgl and
Barreteau, 2017).

Parameterization and Calibration
The parameterization and calibration of empirical ABMs is often
based on a combination of different methods. The first stage,
before the actual parameterization is the characterization stage
in which the initial setup of the model with the principal agent
types and their principle behaviors should be defined (Smajgl
et al., 2011; Smajgl and Barreteau, 2014, 2017). The initial model
setup is often based on a combination of theory and qualitative
information on the local context of the case study region. Suitable
qualitative empirical information in this stage can come from
key informant interviews and expert knowledge, other suitable
technics that can be used to gather qualitative data are fuzzy
cognitive mapping (e.g., Mehryar et al., 2019), focus group
discussions (e.g., Nyumba et al., 2018; Palermo and Hernandez,
2020), participant observations (e.g., Yang and Gilbert, 2008) and
participatorymodeling (e.g., Belem et al., 2018). The initial model
setup could be fully derived from such qualitative, empirical data,
but we advise to build on an established behavioral theory. The
qualitative empirical data can guide the selection or verification
of the behavioral theory. The advantage of developing a decision
module based on an established behavioral theory is that one can
build on an extensive literature. Furthermore, a risk of a model
that is fully—and only—designed based on local empirical data
is overfitting, which means that the model is over-specified or
calibrated on a specific observation (Sun et al., 2016). Such a
model performs well to describe the specific case of the input
data, but fails in other situations. A model that builds on an
established behavioral theory avoids overfitting, which makes it
more generally applicable.

Later stages in the parameterization and calibration process
often rely more on quantitative data, with a variety of empirical
methods suitable for diverse modeling contexts. Three important
criteria are (i) size of the modeled population, (ii) the availability
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of existing data, and (iii) the possibility to conduct surveys or
other types of field work (Janssen and Ostrom, 2006; Smajgl et al.,
2011; Smajgl and Barreteau, 2014, 2017). Smallholder farmers are
often located in low- and middle-income countries where large
longitudinal datasets on farming characteristics are generally
not available (Saqalli et al., 2010; Dobbie et al., 2018). In the
following sections we therefore first describes whichmethods can
be applied to collect data and how these data can then be used for
calibration. Subsequently, we discuss how existing longitudinal
datasets can be utilized.

Surveys
Several of the reviewed ABMs in Section Literature Review
Adaptation Behavior in Drought Risk ABMS rely on (household)
surveys (semi-structured questionnaires) to gather quantitative
input data (Acosta-Michlik and Espaldon, 2008; Van Oel et al.,
2012; Van Duinen et al., 2016; Pouladi et al., 2019; Wens
et al., 2020). With surveys, one can gather quantitative data
on implemented risk reduction measures and factors that
influence taking these measures, such as characteristics, beliefs
and preferences of the relevant agents. Moreover, they can be
applied to calibrate behavioral theories (Robinson et al., 2007). A
benefit of building a decision making module on an established
behavioral theory is that the development of survey questions
can build on a large amount of existing studies that have used
survey data to test those theories. In the context of climate
change adaptation, several empirical studies use surveys to
estimate weights of variables and relationships between variables
for both PMT (e.g., Grothmann and Patt, 2005; Gebrehiwot
and van der Veen, 2015; Truelove et al., 2015; Van Duinen
et al., 2015a; Keshavarz and Karami, 2016), TPB (Yazdanpanah
et al., 2014; Arunrat et al., 2016) and a comparison between
PMT and TPB (Wang et al., 2019). Multiple studies also
work with surveys to estimate farmers’ risk perception and the
influence of risk perceptions on drought risk adaptation (e.g.,
Fisher and Snapp, 2014; Van Duinen et al., 2015b; van Winsen
et al., 2016), which is an important factor in PMT, EUT and
PT. A meta-analysis of surveys on climate change adaptation
behavior can be found in van Valkengoed and Steg (2019). It
is important that a survey is designed in such a way that all
components of the theory can be directly measured. In case
this is not feasible or when an incomplete existing data set is
applied, one can try to proxy components of a theory (e.g.,
Hailegiorgis et al., 2018; Wens et al., 2020). Using proxies is
not the preferred option, because different modelers will have
a different interpretation of the same theory which makes a
comparison of model results difficult. Furthermore, using proxies
or leaving out components of a theory increases the risk of
omitted variable bias.

The main advantage of surveys is that they give insights in
individual attitudes and perceptions and therefore represents
heterogeneity between farmers or other agents (Robinson et al.,
2007). A disadvantage is that most surveys applied in empirical
ABMs only contain data at one point in time and therefore they
are not very suitable to represent temporal variation (Robinson
et al., 2007). Because of this snapshot in time, cross-sectional
datasets are not suitable to test for causality of behavioral theories.

Applications of PMT, for example, would like to test for the
causal relationship between risk perceptions and the intention
to implement adaptation measure. It might be the case that
someone had a high risk perception in the past, therefore this
person has invested in risk reduction measures, which decreases
the current risk perception. If the cross-sectional survey takes
place after this person has invested in adaptation measures, then
a low risk perception will be measured, but based on this survey
it is impossible to conclude whether this person has a low risk
perception because of the investment in adaptation measures or
if this person never had a high risk perception (Bubeck et al.,
2012). A solution for this problem is to use longitudinal surveys
over multiple years, this is however rarely done (van Valkengoed
and Steg, 2019) and most studies will not have the time and
budget to do a longitudinal survey. Alternatively elicitation
methods can be applied that assess individual intentions to
take risk reduction measures, for which contingent valuation
methods, choice experiments, and economic experiments have
been designed to minimize hypothetical bias in such responses.

Contingent Valuation and Choice Experiments
The individual intentions to implement adaptation measures
can be estimated by eliciting willingness to pay for adaptation
measure with the contingent valuation method (e.g., De-Graft
Acquah, 2011; Arshad et al., 2015) or choice experiments (e.g.,
Kassie et al., 2017). Both of these methods elicit willingness to
pay based on hypothetical questions and can therefore also be
used to estimate adaptation intentions in hypothetical policy
or climate change scenarios (Logar and van den Bergh, 2013).
With the contingent valuation method people are explicitly
asked to state how much they are willing to pay for a certain
adaptation measure, while in choice experiments people can be
asked to make a choice between a set of alternative adaptation
measures, where each alternative has several characteristics.
Choice experiments can therefore also be applied to elicit
preferences on other characteristics of adaptation measures or to
elicit preferences on policy scenarios (Holm et al., 2016).

Contingent valuation methods and choice experiments
both create an artificial market and results are therefore
only hypothetical. Especially open ended contingent valuation
questions have been associated with hypothetical bias, meaning
that people overestimate the actual willingness to pay. For this
purpose closed ended contingent valuation questions have been
developed in which respondents state whether or not (yes or no)
they are willing to pay a stated amount for a good, and choice
experiments that mimic a market setting in which goods are
bought with certain characteristics for a given price. However,
hypothetical bias cannot be completely eliminated since these
question formats do not involve real financial incentives as is the
case in economic experiments (Hoyos, 2010; Logar and van den
Bergh, 2013).

Economic Experiments
Economic laboratory experiments are experiments in a
controlled setting, with students or representative samples of
households or specific population groups, where participants
get monetary rewards based on their decisions (Robinson
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et al., 2007; Falk and Heckman, 2009). These experiments try
to estimate causal relations and are often used in behavioral
economics to calibrate behavioral theories. A lot of studies
have used laboratory experiments to estimate risk attitudes,
time preferences, and risk perceptions (Anderhub et al., 2003;
Andreoni and Sprenger, 2012; Trautmann and Kuilen van
de, 2018). A benefit of using EUT and PT in an ABM is that
parameterization can be selected based on these existing studies
if there are limited resources to collect data in the specific case
study region of the ABM. However, accounting for specific
characteristics of farmers in a specific region and heterogeneity
of the farmers in that region requires data collection in that
region which can be done with economic field-experiments or
lab-in-the-field experiments.

Multiple studies use field experiments tomeasure risk aversion
of local farmers (e.g., Binswanger, 1980, 1981; Wik et al.,
2004; Holden and Quiggin, 2017). Several economic studies
have worked with field-experiments to analyze whether farmer’s
adaptation decisions under risk are better reflected by PT or EUT.
Studies with farmers in Malawi (Holden and Quiggin, 2017),
Argentine (Gonzalez-Ramirez et al., 2018), Vietnam (Tanaka
et al., 2010), France (Bocquého et al., 2014), and China (Liu,
2013) demonstrate that the average farmer is loss averse and
that farmers overweight small probabilities and underweight
large probabilities. Individual discount rates are often viewed as
being a generic individual trait that is determined by individuals
impatience as well as other contextual factors, such as market
interest rates. A large behavioral economics literature exists that
has estimated individual discount rates for various population
group and contexts, including farmers in low and middle income
countries (e.g., Tanaka et al., 2010).

Other Available Data
Instead of only relying on their own fieldwork, ABMs often also
make use of census data or other existing time series data on
the population in the case study area if these data are available.
Census data or other existing household data are especially
useful for the parameterization of ABMs for large population.
Surveys and field experiments can generally only be executed
for a sample of the population. Other datasets can therefore be
used for up-scaling of the model to a larger population (e.g.,
Smajgl and Bohensky, 2013). The benefit of Census data is that
it provides nationwide information on the whole population for
multiple years (Smajgl et al., 2011). Census data does not provide
specific data on individual preferences and behavior that can be
used for the calibration of theories. Census data or other large
household datasets can however be used for cluster analysis,
which is a technique where different agent types are identified
based on agent attributes (Smajgl et al., 2011). Agent types in
census data can be compared with agent types in a selected
sample to analyze whether this sample is representative for the
population. Subsequently, survey data or field experiments can
be applied to identify behavior of agent types in the sample which
can be scaled up to the whole population with disproportional
upscaling (Smajgl and Bohensky, 2013). Several of the reviewed
ABMs on drought risk make use of cluster analysis combined
with interviews or surveys (Acosta-Michlik and Espaldon, 2008;

Mehryar et al., 2019; Pouladi et al., 2019). Dobbie et al. (2018)
show that even in a scarce data environment, such as their case
study area in Southern Malawi, cluster analysis can be a useful
method to combine existing regional household data with a small
survey for specific information at the village level. Cluster analysis
does not necessarily have to be done for upscaling, it is also used
to identify agent types in a select sample based on their own
survey data.

Validation and Sensitivity Analysis
The aim of parameterization and calibration is to align model
process with input data, whichmight be enough for a study that is
interested in understanding these processes. Model simulations,
however, always contain some uncertainty, and subjectivity. An
ABM that aims to make predictions therefore also requires
validation of the model output (Cirillo and Gallegati, 2012; Lee
et al., 2015).

Calibration and validation of an ABM is generally an iterative
process. Model validation, according to Cirillo and Gallegati
(2012), should start with calibration of the model processes
with input data (see Section Parameterization and Calibration).
Subsequently, the output data of the model can be compared
with actual (historical) data for the output validation. If output
validation is sufficient, the validation is done. If not, the modelers
should go back to the calibration process. Different types of data
can be used for validation, but the validation data should always
be independent of the calibration data.

The validation of model outputs can be done at different
levels. One approach is to validate the macro-outcomes of
the whole modeled system. For example, based on input
data for parameterization and calibration, an ABM simulates
adaptation behavior. This adaptation behavior feeds into a
coupled hydrological model and influences the hydrological
process. Time series data on these hydrological outcomes can
then be used to compare the simulated model outcomes with
actual outcomes. Examples of this approach can be found in
Pouladi et al. (2019), who validate with data on river discharge,
Van Oel et al. (2012), who validate with data on reservoir
volumes and Wens et al. (2020), who validate with data on
average crop yields. A challenge for the validation of models
on adaptation behavior of smallholder farmers is however the
fact that suitable datasets for output validation are often not
available (Claessens et al., 2012; Brown et al., 2017). Datasets that
do exist often only provide aggregated results and therefore do
not capture heterogeneity between individuals (Claessens et al.,
2012). An alternative approach is to validate specific decision
rules with data from household surveys or economic experiments
instead of these aggregated datasets (Heckbert et al., 2010).
Especially economic experiments can be suitable to test in a
controlled setting whether decision rules in an ABMare a realistic
representation of actual behavior (Colasante, 2017).

A common approach for calibration and validation in
hydrological modeling is to split a dataset and use one part
of this dataset for calibration and another part of the same
dataset for validation (Biondi et al., 2011). For an ABM coupled
to a hydrological model it becomes more complicated, because
more complex dynamics between human decision-making and
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the hydrological process are involved. Ideally one would have
different types of data to validate both the human decision-
making processes and the hydrological processes, but these
different types of datasets are not always available. Splitting a
dataset for the calibration and validation of decision rules is also
a possibility. For example, if a questionnaire involves questions
on factors that determine adaptation intentions and questions
on actual adaptation measures that are implemented, then this
first part can be used for the calibration and the second part for
the validation. A disadvantage of this method is that a survey
often only contains data at one point in time, which makes it
difficult to validate the influence of current intentions on future
adaptation decisions.

An alternative for (or complement to) historical data
validation is a face validity test (Xiang et al., 2005). This can be
done with a discussion of modeling results with experts in the
field (Valbuena et al., 2010), but an alternative more interactive
methods is expert validation with role playing games (Amadou
et al., 2018; Dobbie et al., 2018). A more elaborate discussion of
validation methods and techniques can be found in Klügl (2008),
Cooley and Solano (2011) and Xiang et al. (2005).

Besides validation with empirical data, it is also important
to perform a sensitivity analysis as part of the model validation
process. With a sensitivity analysis, the modelers test for the
impact of variations in parameter values and model assumptions
on the outcome of the model (Cooley and Solano, 2011; Muelder
and Filatova, 2018). A discussion of different types of sensitivity
analysis methods that can be used for an ABM can be found in
Ten Broeke et al. (2016).

CONCEPTUAL FRAMEWORK AND
DISCUSSION

In the previous sections we discussed decision-making theories
and parameterization, calibration and validation of those
theories. The questions that remains is how modelers should
select the relevant theory. To decide what theory to apply/adopt
when developing an agent-based drought risk model, one has
to consider the aim of the model and the local context of the
modeled case study. In the context of drought risk adaptation,
it is important to identify the types of agents that should be
included and the behavioral factors that are the drivers of the
adaptation behavior of those agents. In this section we discuss
the components of a drought risk ABM and make a comparison
between the theories which results in a framework that gives an
overview of the different theories and can guide the development
of a decision-making module for smallholder farmers in an ABM
for drought risk assessment.

Drought risk ABM
A drought risk ABM should at least have a component that
models the hydrological processes related to the drought hazard
and a component on the behavior of stakeholders related to
their exposure and/or vulnerability (Wens et al., 2019). The
foundation combining these components is the traditional risk
framework, where drought risk depends on the product of

hazard, exposure, and vulnerability (Kron, 2005; IPCC, 2012).
Time and space dependents estimates for the hazard, exposure,
and vulnerability can be provided by existing hydrological,
water resources, land use, and economic models (IPCC, 2012).
Within a drought risk ABM, these estimates of the traditional
risk approach can be linked with a module that accounts for
heterogeneous adaptation behavior of interacting agents who
implement adaptation measures to reduce drought risk. Doing so
also allows for a dynamic, temporally explicit analysis, where each
daily, monthly, or yearly decision influences the physical, and
behavioral processes in the next time period. Figure 1 provides
a schematic framework of a drought risk ABM in the context
of agricultural communities. The framework is developed for
application in regional or local case studies, because adaptation
behavior of smallholder farmers differs widely across regions,
and should therefore be studies at the local or regional level
(Gebrehiwot and van der Veen, 2015; Huber et al., 2018). The
framework can also be applied in ABMs with another context
or scale, but might then miss some important element. Price
developments in agricultural markets are, for example, not
included in the framework, because of its regional focus5.

Agents
The focus of the framework in Figure 1 is the individual decision-
making process of the farmer. Decision of other agents can
be modeled exogenously or endogenously depending on the
research question. An overview of agent types for drought and
water-resource ABMs can be found in Kaiser et al. (2020).
Important agent categories in the context of drought in rural
areas are included in Figure 1. The first important agent type,
besides the farmers, is the government (local and national
policymakers and regulators) who provides risk information
and can implement policies to change adaptation behavior.
Other important agents are domestic and industrial water
users as the use of water by those groups can influence the
water availability of farmers potentially leading to conflicts of
interest. The final important group of agents in Figure 1 are
the financial institutions. Loans from banks can be used to
finance adaptation measures, but access to credit is often missing
for smallholder farmers in low- or middle-income countries
(Hertel and Lobell, 2014). Insurance schemes and financial aid
from international donor organizations can improve the financial
capacity to invest in adaptation measures, and, if well designed,
can provide incentives to invest more in adaptation measures
(Suarez and Linnerooth-Bayer, 2010; Nnadi et al., 2013; Haer
et al., 2019). Insurance schemes and financial aid can also reduce
the incentives for adaptation if compensations and premiums do
not reflect the risks (Suarez and Linnerooth-Bayer, 2010).

Comparing the Theories
After the relevant agents have been selected, model designers
have to select the relevant behavioral theory that captures the
cognitive process of the agents and their interaction with the
other agents. The relevant theory depends on the context and the

5The assumption is that the farmers are price takers and that regional droughts do

not affect the world prices, meaning these are exogenous in the regional ABM.
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FIGURE 1 | Conceptual framework agricultural drought risk ABM.

aim of the study. Figure 1 gives an overview of the factors that
are included in EUT, PT, PMT, TPB and Consumat and Table 2

summarizes the main factors, advantages and disadvantages of
these theories.

The advantage of the economic theories, EUT and PT, is
that they consider the full distribution of risks, meaning that
they recognize the existence of different drought events with
different degrees of losses and likelihoods. That way they can be
well integrated in natural disaster risk assessments that estimate
probabilistic risk distributions. A disadvantage of EUT is the
rationality assumption. Studies show that no farmers are perfectly
rational profit maximizers (Van Duinen et al., 2015b; Findlater
et al., 2019). The advantages may outweigh this disadvantage
when behavior is close enough to reality for example with large
commercial farmers that are focused on profit maximization,
but it is a very restrictive assumption for models focusing
on smallholder and subsistence farmers. Partly this can be

overcome by accounting for subjective risk perception in EUT
(e.g., Haer et al., 2019) that assumes less strict rationality or
by applying PT which allows for more realistic modeling of
risk attitudes, by accounting for loss aversion and probability
weighting. However, the focus of EUT and PT misses some
important attitudinal variables that are accounted for in the
psychological theories.

An advantage of PMT and TPB, compared to the economic
theories, is that they included the perceived ability to take
the adaptation measure. In PMT this is called perceived self-
efficacy and in TPB perceived behavioral control. There is a
subtle difference between those two variables: Ajzen (2002b)
sees perceived behavioral control as a combination of self-
efficacy and controllability (the extent to which performance is
up to the actor). This controllability element is not included in
perceived self-efficacy in PMT, but the empirical measurement of
perceived behavioral control and perceived self-efficiency is often
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TABLE 2 | Overview of theories.

Theory/framework Description Main factors Advantages Disadvantages

Expected Utility

Theory (EUT)

Economic theory, assuming

rational utility maximizing agents.

Traditional EUT:

perfect information. Subjective

EUT: No perfect information,

agents make decision based on

their own subjective estimates of

the risks.

Adaptation costs

Adaptation benefits

Risk attitudes through utility

curvature

Time-preferences

Risk perceptions

Income constraints

Full distribution of risk. Easy to

link to natural disaster risk

assessments models based

on costs and benefits.

Calibration can be done with

economic lab and

field experiments.

Does not include other

psychological factors, such

as perceived ability to perform,

subjective norms and attitudes.

No (or limited) bounded rationality

in traditional EUT, but risk

misperceptions allowed in

subjective EUT.

Limited heterogeneity between

agents in traditional EUT, but

more heterogeneity in Subjective

EUT.

Prospect Theory (PT) Introduces psychological

elements in EUT. Gains and

losses are evaluated based on a

reference point and losses loom

larger in decisions than

equivalent gains. Allows for

non-linear probability weighting

in decisions.

Adaptation costs

Adaptation benefits

Risk attitudes through utility

curvature and probability

weighting

Time-preferences

Risk perceptions

Loss aversion

Income constraints

Full distribution of risk.

Accounts for loss aversion

and bounded rationality in

evaluation or risks. Calibration

can be done with economic

lab and field experiments.

Does not include other

psychological factors, such as

perceived ability to perform,

subjective norms and attitudes.

Protection

Motivation Theory

(PMT)

Psychological theory, assumes

that adaptation behavior

depends on intentions to adapt,

which is a function of threat

appraisal and coping appraisal.

Perceived probability

Perceived severity

Perceives self-efficacy

Perceived response efficacy

Perceived response costs

Combines risks perceptions

and perceived costs and

benefits of economic theories

with individual coping

perceptions.

Does not include a full

distribution or risks and does not

include risk attitudes and time

preferences.

Theory of Planned

Behavior (TPB)

Psychological theory with

intention to perform behavior as

central factor in decision-making

process. ‘ Intention is influenced

by perceived behavioral control,

subjective norms and

personal attitudes.

Perceived behavioral control

Subjective norm

Attitude

Includes individual attitudes

and subjective norms.

Does not include risk

perceptions and attitudes and

time preferences.

Consumat

Framework

Framework that combines

elements of psychological and

economic theories. Agents can

switch between different types of

decision-making strategies

depending on level of need

satisfaction and uncertainty.

Uncertainty

Need satisfaction

Social network

Includes elements of both

psychological and

economic theories. Good to

model influence of

social networks.

Include a lot of different elements

and relatively little empirical

applications, and there are no

clear guidelines on which needs

should be included and how they

should be measured.

Calibration and validation is

therefore complicated.

identical in practice (e.g., Wang et al., 2019). Besides perceived
self-efficacy, PMT has quite some overlap with the economic
theories, as it accounts for adaptation costs with perceived
responses costs and benefits with perceived response-efficacy
and it accounts for risk perceptions (perceived probability
and perceived severity). A disadvantage of PMT is that it
does not account for the full distribution of risk and risk
perceptions for different scenarios, but only for perceptions of
a single or summed probability and damage. This does not
capture that different drought events have different probabilities
with varying drought impacts and adaptation measures have
different risk reduction effects per event. Moreover, PMT does
not account for risk attitudes. This disadvantages also holds
for TPB, which neglects risk perceptions which would be
important for modeling drought adaptation decisions. However
TPB points toward other important personal attitudes that can
influence adaptation decisions and subjective norms, influenced

by the social network, that are not included in the other
theories6.

In conclusion, there is not a single theory that captures all
relevant decision variables. It depends on the local context and
purpose of the model which one is preferable. An advantage
of the economic theories is that they can be better linked to
natural disaster risk assessment models and estimate adaptation
behavior based on benefits and costs. This approach can also
address future climate change (influencing future risk) and
policy interventions like subsidies (influencing adaptation).
An advantage of the psychological theories is that they can
(compared to the economic theories) capture more heterogeneity
in bounded rational beliefs, norms, and personal attitudes, but
they miss a full distribution of risk and risk perceptions. No

6PMT also implicitly assumes that perceptions are influenced by influence from

the social network, but social norms are not explicitly included as model variable.
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theory perfectly describes the behavior of everyone and even the
same person is likely to behave differently in different situations,
therefore it might be useful to combine different theories in one
model, such as in the Consumat approach in which an agent can
follow four different types of behavioral models depending on
the level of need satisfaction and uncertainty (Jager et al., 2000;
Schwarz et al., 2020).

The decision on the selection of a theory not only influences
which factors will be included in simulating the decision-making
process of the individual farmer, but also how the interaction
of these farmers with other relevant agents can be modeled.
Empirical studies show that risk perceptions are influenced by
memory of previous drought impact (risk experience) and risk
information from the government, the social network or media
(Gebrehiwot and van der Veen, 2015; Van Duinen et al., 2015b;
Azadi et al., 2019; van Valkengoed and Steg, 2019), which can
only be included if risk perceptions are part of the selected theory.
Decisions of neighboring farmers that have a monetary impact
on the wealth of the farmer can be captured by the economic
theories, but impacts through social norms or social comparison
are better captured by TPB and the Consumat framework.
Financial institutions can influence the capital availability which
plays a direct or indirect role in each theory, but in each theory
this is modeled in a different way which influences how the role
of financial institutions can be integrated in the model.

RECOMMENDATIONS FOR FUTURE
RESEARCH

Studies on drought risk assessment increasingly use ABMs
to capture the complex dynamics between humans and their
environment. ABM has the potential to provide a realistic
representation of boundedly rational behavior of heterogeneous
individuals, but existing models often apply ad hoc decision
rules for the human agents or a loose interpretation of
existing economic or psychological theories. To improve the
representation of human decision-making, the modeler should
build on the rich social science literature on human behavior
toward risk. This paper aims to contribute to an improved
design of drought risk ABMs. This is done by providing a
review of existing ABMs on drought risk with a focus on
decision rules, followed by an overview of behavioral theories
that can be used for these decision rules, and a review of
methods for parameterization, calibration and validation of those
decision rules. These different review components are combined
in a conceptual framework for the integration of hydrological
modeling whit decision theories from behavioral economics
and psychology.

Based on our study we provide the following eight main
recommendation for future research:

1. Ground human-decision making in ABMs in an established
behavioral theory. These theories have been extensively
tested and therefore provide a solid base for capturing
decision processes. Models with simple decision rules
based on empirical observations or ad hoc assumptions
may miss important elements in the underlying decision
process. Furthermore, comparability of ABM results may

be improved if behavioral rules are based on similar sets
of decision theories. This requires collaboration between
physical (hydrologic, agronomic) and social scientists in the
model development.

2. Select the behavioral theory in an early stage of model
development to make sure that all elements of the theory can
be integrated in the model. The theory that is most suitable
to use depends on the aim and the context of the model. The
framework in this paper can be used for a comparison of the
theories to guide selection of the relevant theory.

3. Researchers who use the same theory can still make different
assumptions about that theory which can lead to large
differences in the outcome of an ABM (Muelder and Filatova,
2018). It is important that researchers are transparent about
their model assumptions such that a comparison can be made.
To improve transparency about decision rules, authors can
make use of the ODD+D protocol (Müller et al., 2013).

4. Parameterization and calibration of the behavioral rules,
following the selected behavioral theory, is ideally based on
micro-data to provide a good fit.

5. Include measurements for all variables of the selected theory.
ABMs that build on a behavioral theory sometimes ignore
elements of that theory or use simple proxy variables based
on own interpretations. It is advisable that all elements
of a selected theory are included in the ABM and that
measurement of those variables is based on methods
developed in social science literature, to make sure that
relevant decision processes are adequately represented in
the ABM.

6. Rigorous empirical methods have been developed to provide
data for calibration of behavioral theories, such as choice-
experiments and economic lab-, and field experiments, which
are advisable to use for calibrating ABM decision rules that are
grounded in these theories.

7. Historical datasets are often not suitable to validate individual
processes, because they only contain aggregated information.
It is therefore advisable to use data on individual behavior,
which can be obtained with household survey and economic
experiments, for the validation of decision rules.

8. Most existing models only focus on decision-making of
farmers, whilst further research can be done on the interaction
between farmers and other agents, such as governments,
financial institutions, and domestic and industrial water users.
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